Use of Genetic Programming for the Search of a New Learning Rule for Neural Networks

نویسندگان

  • Samy Bengio
  • Yoshua Bengio
  • Jocelyn Cloutier
چکیده

| In previous work ((1, 2, 3]) we explained how to use standard optimization methods such as simulated annealing, gradient descent and genetic algorithms to optimize a parametric function which could be used as a learning rule for neural networks. To use these methods, we had to choose a xed number of parameters and a rigid form for the learning rule. In this article, we propose to use genetic programming to nd not only the values of rule parameters but also the optimal number of parameters and the form of the rule. Experiments on classiica-tion tasks suggest genetic programming nds better learning rules than other optimization methods. Furthermore, the best rule found with genetic programming outperformed the well-known backpropagation algorithm for a given set of tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

ارزیابی کاربرد شبکه عصبی مصنوعی و بهینه‌سازی آن با روش الگوریتم ژنتیک در تخمین داده‌های بارش ماهانه (مطالعه موردی: منطقه کردستان)

Estimating spatial distribution of precipitation is vital to execute water resources plans, drought, land-use plans environment, watershed management, and agricultural master plans. High variation in amount of precipitation in various parts, lack of measurement stations, and the complexity of relationship between precipitation and parameters affecting it have doubled the importance of developin...

متن کامل

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

Estimation of Discharge over the Submerged Compound Sharp-Crested Weir using Artificial Neural Networks and Genetic Programming

Truncated sharp crested weirs are used to measure flow rate and control upstream water surface in irrigation canals and laboratory flumes. The main advantages of such weirs are ease of construction and capability of measuring a wide range of flows with sufficient accuracy. Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for estimation of hydraulic data. In...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994